Search results for "euler equation"
showing 10 items of 36 documents
Zero viscosity limit of the Oseen equations in a channel
2001
Oseen equations in the channel are considered. We give an explicit solution formula in terms of the inverse heat operators and of projection operators. This solution formula is used for the analysis of the behavior of the Oseen equations in the zero viscosity limit. We prove that the solution of Oseen equations converges in W1,2 to the solution of the linearized Euler equations outside the boundary layer and to the solution of the linearized Prandtl equations inside the boundary layer. © 2001 Society for Industrial and Applied Mathematics.
Un modelo no hidrostático global con coordenada vertical basada en altura
2015
Memoria presentada en la Universitat de València para optar grado de de Doctor Esta tesis documenta la investigación que he realizado en modelización atmosférica: se parte de las ecuaciones físicas de la atmósfera y se aplican métodos numéricos eficientes para encontrar una solución a dichas ecuaciones a partir de unas condiciones iniciales dadas. Para este fin, se ha desarrollado un modelo atmosférico cuyas características principales son: espectral en la representación horizontal de los campos, discretización vertical de alto orden de exactitud, y semi-implícito en la integración temporal. Además, el modelo es no hidrostático y tiene una coordenada vertical basada en altura, en vez de la …
IMEX Finite Volume Methods for Cloud Simulation
2017
We present new implicit-explicit (IMEX) finite volume schemes for numerical simulation of cloud dynamics. We use weakly compressible equations to describe fluid dynamics and a system of advection-diffusion-reaction equations to model cloud dynamics. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravitational waves as well as diffusive effects and a non-stiff nonlinear part that models nonlinear advection effects. We use a stiffly accurate second order IMEX scheme for time discretization to approximate the stiff linear operator implicitly and the non-stiff nonlinear operator explicitly. Fast microscale clou…
Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments
2013
Accepted by the Journal of Computational Physics Adaptive mesh refinement generally aims to increase computational efficiency without compromising the accuracy of the numerical solution. However it is an open question in which regions the spatial resolution can actually be coarsened without affecting the accuracy of the result. This question is investigated for a specific example of dry atmospheric convection, namely the simulation of warm air bubbles. For this purpose a novel numerical model is developed that is tailored towards this specific application. The compressible Euler equations are solved with a Discontinuous Galerkin method. Time integration is done with an IMEXmethod and the dy…
Equilibrium real gas computations using Marquina's scheme
2003
Marquina's approximate Riemann solver for the compressible Euler equations for gas dynamics is generalized to an arbitrary equilibrium equation of state. Applications of this solver to some test problems in one and two space dimensions show the desired accuracy and robustness
A Second Order Accurate Kinetic Relaxation Scheme for Inviscid Compressible Flows
2013
In this paper we present a kinetic relaxation scheme for the Euler equations of gas dynamics in one space dimension. The method is easily applicable to solve any complex system of conservation laws. The numerical scheme is based on a relaxation approximation for conservation laws viewed as a discrete velocity model of the Boltzmann equation of kinetic theory. The discrete kinetic equation is solved by a splitting method consisting of a convection phase and a collision phase. The convection phase involves only the solution of linear transport equations and the collision phase instantaneously relaxes the distribution function to an equilibrium distribution. We prove that the first order accur…
A flux-split algorithm applied to conservative models for multicomponent compressible flows
2003
In this paper we consider a conservative extension of the Euler equations for gas dynamics to describe a two-component compressible flow in Cartesian coordinates. It is well known that classical shock-capturing schemes applied to conservative models are oscillatory near the interface between the two gases. Several authors have addressed this problem proposing either a primitive consistent algorithm [J. Comput. Phys. 112 (1994) 31] or Lagrangian ingredients (Ghost Fluid Method by Fedkiw et al. [J. Comput. Phys. 152 (1999) 452] and [J. Comput. Phys. 169 (2001) 594]). We solve directly this conservative model by a flux-split algorithm, due to the first author (see [J. Comput. Phys. 125 (1996) …
Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations
1998
This is the first of two papers on the zero-viscosity limit for the incompressible Navier-Stokes equations in a half-space. In this paper we prove short time existence theorems for the Euler and Prandtl equations with analytic initial data in either two or three spatial dimensions. The main technical tool in this analysis is the abstract Cauchy-Kowalewski theorem. For the Euler equations, the projection method is used in the primitive variables, to which the Cauchy-Kowalewski theorem is directly applicable. For the Prandtl equations, Cauchy-Kowalewski is applicable once the diffusion operator in the vertical direction is inverted.
Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms
1999
SUMMARY A multiobjective multidisciplinary design optimization (MDO) of two-dimensional airfoil is presented. In this paper, an approximation for the Pareto set of optimal solutions is obtained by using a genetic algorithm (GA). The first objective function is the drag coefficient. As a constraint it is required that the lift coefficient is above a given value. The CFD analysis solver is based on the finite volume discretization of the inviscid Euler equations. The second objective function is equivalent to the integral of the transverse magnetic radar cross section (RCS) over a given sector. The computational electromagnetics (CEM) wave field analysis requires the solution of a two-dimensi…
Power ENO methods: a fifth-order accurate Weighted Power ENO method
2004
In this paper we introduce a new class of ENO reconstruction procedures, the Power ENO methods, to design high-order accurate shock capturing methods for hyperbolic conservation laws, based on an extended class of limiters, improving the behavior near discontinuities with respect to the classical ENO methods. Power ENO methods are defined as a correction of classical ENO methods [J. Comput. Phys. 71 (1987) 231], by applying the new limiters on second-order differences or higher. The new class of limiters includes as a particular case the minmod limiter and the harmonic limiter used for the design of the PHM methods [see SIAM J. Sci. Comput. 15 (1994) 892]. The main features of these new ENO…